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ABSTRACT 

 

Poisson regression is a commonly used tool for analyzing rate data; however, the 

assumption that the mean and variance of a process are equal rarely holds true in practice. When 

this assumption is violated, a quasi-Poisson distribution can be used to account for the existing 

over- or under-dispersion. This paper presents an analysis of a study conducted by NASA to assess 

the performance of a new airborne spacing algorithm. A deterministic computer simulation was 

conducted to examine the algorithm in various conditions designed to simulate real-life scenarios, 

and two measures of algorithm performance were modeled using both continuous and categorical 

factors. Due to the presence of under-dispersion, tests for significance of main effects and two-

factor interactions required bias adjustment. This paper presents a comparison of tests of effects 

for the Poisson and quasi-Poisson models, details of fitting these models using common statistical 

software packages, and calculation of dispersion tests. 

 

 

Keywords: Interval Management; Poisson Regression; Quasi-Poisson; Spacing Algorithm; Under-

Dispersion. 

 

 

INTRODUCTION 
 

Many engineering processes require monitoring the number of times an event occurs in a 

given unit interval. For example, consider a process in which an important quality characteristic is 

the number of flaws in an object, the number of defective items in a batch, or the number of phone 

calls per day to a customer service department. These rates are often modeled by a Poisson 

distribution. A key assumption of the Poisson distribution is that the mean and variance of the 

process are equal; however, this is rarely the case in practice. Instead, over-dispersion often exists 

due to the variance being greater than the mean. In far fewer cases, such as the one presented here, 

data are under-dispersed (variance less than the mean). Inference concerning effects of interest can 

account for these over- and under-dispersed cases by relaxing the assumption of equi-dispersion 

and implementing a quasi-Poisson inference approach. The case study in this paper concerns the 

application of quasi-Poisson regression to an airborne spacing algorithm to properly account for 

the bias in effects tests since the more common use of the negative binomial is not applicable in 

the under-dispersed case (Cameron and Trivedi (1998)). 

 

The National Aeronautics and Space Administration (NASA) conducted a computer 

simulation to assess the performance of a recently modified airborne spacing algorithm used in a 

https://ntrs.nasa.gov/search.jsp?R=20190027639 2020-05-10T03:56:54+00:00Z
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suite of integrated air/ground technologies that allow Interval Management (IM) operations to 

occur in high-density terminal environments (Swieringa et al. 2014). IM consists of flight deck 

automation that enables aircraft to achieve or maintain precise spacing behind a preceding aircraft, 

which is referred to as the target aircraft. The avionics used to conduct an IM operation include a 

spacing algorithm onboard the aircraft that provides commanded speeds which the flight crew 

follows in order to achieve or maintain the precise spacing interval.  

 

The existing NASA spacing algorithm was modified to address integration issues with air 

traffic control automation that were discovered during previous human-in-the-loop simulations. A 

new term was added to the control law in the spacing algorithm to prevent undesirable closure 

rates between the IM and target aircraft, causing the IM aircraft to either get too close to the target 

aircraft or the aircraft behind it. Previous versions of the NASA spacing algorithm produced 

closure rates that were unacceptable to air traffic controllers. For more details regarding the 

spacing algorithm, see Swieringa et al. (2014).  

 

A computer simulation was specifically designed to evaluate the modified algorithm before 

proceeding with additional, more expensive human-in-the-loop testing. Two of the key metrics 

used in the evaluation showed clear signs of being under-dispersed (i.e., variance less than the 

mean). Since inference from a Poisson regression relies upon the assumption of equi-dispersed 

data, resulting effects tests are biased when the data are truly over- or under-dispersed. Therefore, 

inference of these two key performance metrics with respect to the factors of interest in this 

simulation and their interactions required proper bias-adjustment to account for the under-

dispersion.  

 

Data were collected during a deterministic computer simulation with a simulated airspace 

that modeled the Phoenix Sky Harbor (KPHX) terminal environment. Table 1 presents the five 

independent variables used in this study: wind condition, target aircraft speed profile, target aircraft 

arrival route, initial spacing error, and expected target aircraft weight. The five wind conditions 

were chosen from actual winds recorded at KPHX in 2011 and correspond to wind patterns that 

were expected to exercise the modifications to the airborne spacing algorithm. The seven target 

aircraft speed profiles, created by KPHX subject matter experts, represent various trajectories 

flown by the target aircraft. The speed profiles were a nominal profile (“Nominal”), where the 

target aircraft flew the speeds expected by the spacing algorithm; a fast speed profile (“Fast”), 

where the target maintained a speed higher than the published speeds throughout the arrival; a slow 

speed profile (“Slow”), where the target aircraft maintained a speed slower than the published 

speed throughout the arrival; an altitude profile (“Altitude Change”), which added an altitude step-

down prior to the terminal airspace to the slow speed profile; and three “pulse” speed profiles 

which switched between faster than and slower than the published speed profile over the course of 

the arrival (“Pulse 1”, “Pulse 2”, and “Pulse 3”). The two target aircraft arrival routes correspond 

to the target aircraft arriving at KPHX on the northwest (MAIER) or northeast (EAGUL) routes 

as depicted in Figure 1. The expected weight of the target aircraft varied from 160,000 to 198,000 

pounds, and at the start of a run, the IM aircraft had an initial spacing error that was either on time, 

60 seconds ahead of schedule, or 60 seconds behind schedule. This experiment utilized a factorial 

design, so all treatment combinations were simulated. Since the study was deterministic, only one 

replicate was needed, resulting in a total of 630 runs. 
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Figure 1. Depiction of the arrival routes and three regions of the airspace 

 

 

 

Table 1. Independent variables under investigation and their levels 

 

Independent Variable Levels 

Wind Condition (WC) High Wind Magnitude 

Target Late and IM Aircraft Late 

Target Early and IM Aircraft Early 

Target Late and IM Aircraft Early 

Target Early and IM Aircraft Late 

Target Speed Profile (TSP) Nominal 

Altitude Change 

Fast 

Slow 

Pulse 1 

Pulse 2 

Pulse 3 

Target Arrival Route (TAR) EAGUL 

MAIER 

Initial Spacing Error (ISE) 60 seconds early 

on time 

60 seconds late 

Expected Target Weight (ETW) 160,000 lbs. 

185,000 lbs. 

198,000 lbs. 

 

 

Before implementing the algorithm into a larger scale environment with direct human 

participation, researchers were interested in identifying specific conditions of the factors listed in 

Table 1 that degrade the spacing algorithm’s performance. Two of the metrics collected during the 

study to quantify this behavior were spacing error inflection count and speed change rate. An 
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inflection occurs when the IM aircraft is more than 10 seconds behind schedule and then traverses 

the on-time mark to become more than 10 seconds ahead of schedule, or vice versa (see Figure 2). 

The number of inflections is a means by which to monitor the stability of the spacing algorithm’s 

control law, and a large number of inflections is an indicator that the control law is underdamped. 

The ideal behavior of the airborne spacing algorithm is to null the spacing error and then maintain 

the assigned spacing interval for the duration of the flight; thus, the number of inflections is not 

expected to have a high dependence on the length of the flight. The speed change rate commanded 

by the algorithm is defined as the number of speed changes per minute during IM operations. The 

speed change rate was analyzed for three non-overlapping regions of the simulated airspace: 

Center, Terminal Radar Approach Control (TRACON), and Final Approach (see Figure 1). In 

practice, each of these three airspace regions have different design constraints and are controlled 

by different air traffic controllers using different techniques at separate facilities, and the target 

aircraft speed profiles in this study were designed to emulate this behavior. In addition, a single 

wind field varies by altitude; thus, as an aircraft descends during its flight from the Center airspace 

to the runway, the winds encountered vary. As a result, the correlation in the speed change rate for 

a single flight is considered to be negligible over these three regions of airspace. Therefore, in this 

study, inflection counts are analyzed per flight, while speed change rates are calculated per minute 

(min) for each region of the simulated airspace.  

 

 

 
 

Figure 2. Depiction of two inflections occurring. First, when the IM aircraft moves from Zone B 

(more than 10 seconds behind schedule) to Zone A (more than 10 seconds ahead of schedule). 

Then, a second inflection occurs when the IM aircraft moves from Zone A back to Zone B. 

 

 

METHODS 

 

The most common method for modeling count data is implementing a Poisson regression; 

however, under-dispersion in all four datasets of interest from the simulation study was anticipated. 

That is, low variability with respect to the mean was expected since recent modifications to the 

algorithm included several new features intended to improve the speed control behavior by 

decreasing the frequency of speed changes and reducing the effect of noise on the commanded 

speeds. It is common in practice to encounter datasets that do not meet the equal mean/variance 

Spacing Error 

Distance to the Runway 

10 sec 
ahead 

on 
schedule 

10 sec 
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Zone A 

Zone B 

Inflection Inflection 
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assumption of the Poisson distribution, though under-dispersion is the rarer of the two cases. Some 

examples of modeling over- or under-dispersed data include the simulation study of Heinzl and 

Mittlbock (2003), which investigates the effect of dispersion on R-squared measures for Poisson 

regression models, Byers et al. (2003) where the negative binomial regression model is used for 

over-dispersed discrete outcomes, and Boyle et al. (1997) where under-dispersed, zero-inflated 

medical data were analyzed using Poisson regression models to evaluate the bias of goodness-of-

fit statistics when the data sets are sparse. Unlike in Boyle et al. (1997), our data are not zero-

inflated and our focus is on inference rather than on goodness-of-fit. 

 

Poisson Regression 

 

Consider a dataset for which the data are counts recorded within a specified unit interval 

(time, distance, area, etc.), i.e., rates. The Poisson distribution models the probability of y events 

occurring within a specified unit interval as 

 

𝑃(𝑦|𝜇) =
𝑒−𝜇𝜇𝑦

𝑦!
,  𝑦 = 0, 1 , 2, … 

 

where μ is both the mean and variance of the distribution, and depends on the specified unit or 

period of time. For example, if µ is the mean number of events per unit time and t is the time period 

of interest, then the mean number of events in time period t is µt. This expression is based on the 

assumption that the mean number of events per unit is constant. However, in practice the mean 

often depends on levels of regressor variables that change during the process. In this case, Poisson 

regression can be used to model the data.  

 

Let 𝑥𝑖𝑗 be the level of the j-th regressor variable at time ti for i = 1,…, n and j = 1,…, k. 

Then µi is the mean number of events in time period ti. Assuming for 𝑖 = 1, … , 𝑛 that 𝜇𝑖 is not 

changing independently from observation to observation, then the rate 
𝜇

𝑡𝑖𝑚𝑒
 can be modeled as a 

function of the k regressor variables. The Poisson mean then becomes 𝜇(𝒙𝒊; 𝜷) where 𝜷 is a vector 

of parameters to be estimated and 𝒙𝑖 is a vector of k regressors at time i. Using the log-link function 

results in the Poisson generalized linear model (GLM) also known as the log-linear regression 

model,  

 
𝜇

𝑡𝑖𝑚𝑒
= 𝜇(𝒙𝒊; 𝜷) = 𝑒𝒙𝒊

𝑻𝜷 = 𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘. 

 

Taking the natural log of both sides, 

 

ln (
𝜇

𝑡𝑖𝑚𝑒
) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘  

𝜇 = 𝑒𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘+𝑜𝑓𝑓𝑠𝑒𝑡 
 

where the offset term represents the natural log of the time taken for the y events to occur. The 

coefficient of this offset term is fixed at one since the response is assumed to change per unit of 

time yet the progression of time does not affect the response. Also, when the interval of time for 

recording counts is the same for each observation, the offset is solely a constant that no longer aids 

in explaining variation from interval to interval and is therefore absorbed into the model intercept 
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term, 𝛽0. We refer the reader to McCullagh and Nelder (1989, pg. 183), Myers (1990, pg. 332), 

and Cameron and Trivedi (1998, pg. 61) for further details concerning regression models for count 

data and other GLMs. For our datasets, inflection counts were analyzed as counts per simulated 

flight, resulting in the offset = 𝑙𝑛(𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑) = 𝑙𝑛(1 flight) = 0. However, all three speed 

change rate metrics were analyzed as the number of changes per minute, and since each flight 

segment varied in length of time, an offset of 𝑙𝑛(𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑓𝑙𝑖𝑔ℎ𝑡 𝑟𝑒𝑔𝑖𝑜𝑛) was 

added to each model. 

 

Quasi-Poisson Modeling and Bias-Adjustment 

 

Although Gourieroux et al. (1984) point out that parameter estimates using standard 

Poisson regression are consistent in the presence of over- or under-dispersion, Cameron and 

Trivedi (1986) show that standard errors of these estimates are biased downward in the presence 

of over-dispersion and upward in the presence of under-dispersion. Due to the consistency of the 

linear estimators, prediction is not affected by the presence of over- or under-dispersion; however, 

inference is directly affected by biased standard errors and their subsequent effects-test statistics. 

In the case of over-dispersion, this could result in a variable appearing to be significant when in 

fact it is not, and the opposite incorrect conclusion that a variable is not significant when in fact it 

is can occur in the under-dispersed case. Therefore, proper adjustment of these errors is critical for 

statistical inference. By adjusting the effects-test statistics, equi-dispersion is no longer an 

assumption and, therefore, quasi-Poisson rather than standard Poisson regression analysis should 

be conducted. 

 

Cameron and Trivedi (1998) state that an alternative to Poisson regression is to specify a more 

general distribution than the Poisson (such as the negative binomial) that does not require equally 

dispersed data. Indeed, adopting the negative binomial is common practice when the data suffer 

from over-dispersion; however, they also note that use of the negative binomial distribution is not 

permissible in the case of under-dispersion since the formulation of the negative binomial requires 

the mean to be less than or equal to the variance. The authors go on to suggest that the easiest way 

to handle under-dispersed data is to conduct a standard Poisson regression to estimate model 

parameters since the parameter estimates are consistent and then adjust the biased standard errors 

of the output. Statistical software packages such as JMP and R have dispersion options available 

that calculate the dispersion parameter, 𝜙, and automatically adjust the biased errors and effects-

test statistics.  

 

An estimate of the dispersion parameter, 𝜙̂, is given by the sum of the squared standardized 

(Pearson) residuals divided by the residual degrees of freedom. That is,  

 

 𝜙̂ =
1

𝑛−𝑑𝑓𝑚𝑜𝑑𝑒𝑙
∑

(𝑦𝑖−𝜇̂𝑖)2

𝜇̂𝑖

𝑛
𝑖=1  , (1) 

 

where  𝜇𝑖̂ = 𝑒𝑥𝑝(𝒙𝑖
′𝜷̂) are the fitted values from the standard Poisson regression. Here n is the 

number of total observations and 𝑑𝑓𝑚𝑜𝑑𝑒𝑙 is the total degrees of freedom from the effects in the 

model (see the next section for an explanation of the degrees of freedom for an individual model 

effect). If adjustments for standard errors are not readily available in software, they can be easily 

carried out by multiplying the biased standard errors of effects (denoted by SE) by the square root 
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of the estimate of the dispersion parameter (i.e., √𝜙̂*SE). Test statistics are adjusted by dividing 

them directly by 𝜙̂ .  
 

It is important to note that the dispersion parameter will always be greater than or equal to zero. 

Intuitively, 𝜙 can be interpreted by its deviation from the value of one, where 𝜙 < 1 indicates 

under-dispersion, 𝜙 > 1 indicates over-dispersion, and values of 𝜙 close to one indicate the 

standard Poisson equal mean/variance relationship holds true (i.e., equi-dispersion). In cases of 

perfect equi-dispersion, the sum of the squared Pearson residuals mentioned above will be equal 

to the residual degrees of freedom, resulting in 𝜙 = 1. The sum of the Pearson residuals is also 

known as the Pearson 𝜒2 test statistic and follows an approximate 𝜒2 distribution with residual 

degrees of freedom when n is large. Therefore, deviations from equi-dispersion can be tested, 

though it should be noted that due to the approximate 𝜒2 distribution this is not an exact test and 

should be interpreted accordingly, especially in cases of low degrees of freedom. For over-

dispersion (under-dispersion), upper (lower) quantiles are used for a specified one sided α-level 

hypothesis test of the Pearson 𝜒2 test statistic.  

 

Inference for Poisson Regression Models 

 

In this study, three of the five independent variables were categorical, which is very 

common in simulations conducted at NASA to evaluate new air traffic management technologies. 

Inference on Poisson regression models containing categorical factors can be conducted by testing 

individual “dummy” variables or by conducting Likelihood Ratio (LR) tests for each individual 

effect (Agresti (2007, pg. 86)). If “dummy” variables are used, a base level is chosen against which 

to test the other levels of the variable.  LR-tests can be used to determine if the overall effect of 

the variable (i.e., a combination of all its levels) has a significant impact on the response. That is, 

LR-tests indicate whether the model fits the data better with or without the variable. Individual 

effects can then be tested by comparing reduced models less each variable to the full model 

containing all variables. Some software packages use these Type-III tests of effects as standard 

output. Other packages may require these Type-III test calculations to be specified beforehand or 

may follow effect heredity assumptions which rely on main effect and interaction parent 

relationships. 

 

In the case of the equi-dispersed Poisson model, the LR-test rejects the significance of a 

main effect or interaction if 

 

 −2𝑙𝑛 [
𝐿(𝑓𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙)

𝐿(𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)
] > 𝜒(1−𝛼,𝑑𝑓)

2   (2) 

 

where L is the likelihood of a model. The LR-test statistic follows a 𝜒2 distribution with degrees 

of freedom equal to one if the factor is continuous and v-1 degrees of freedom if the factor is 

categorical where v represents the number of levels for the tested categorical effect. Two-factor 

interactions where both factors are categorical can be tested in a similar fashion using the product 

of the degrees of freedom of the respective categorical factors. Two-factor interactions made up 

of one continuous and one categorical factor use degrees of freedom of the categorical factor. In 

the case of over- or under-dispersed data, these 𝜒2 statistics are biased, and thus, need to be 



8 

 

adjusted. This can be achieved by simply dividing each 𝜒2 statistic by the dispersion parameter 

given in (1). Therefore, for the over- or under-dispersed case, the effects-test in (2) becomes 

 

 −2𝑙𝑛 [
𝐿(𝑓𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙)

𝐿(𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)
] ∗ 𝜙̂−1 >  𝜒(1−𝛼,𝑑𝑓)

2 .  (3) 

 

The case study presented in this paper implements the Type-III LR-test because overall effects 

rather than level-to-level comparisons were of interest. P-values rather than bias-adjusted 𝜒2 

statistics are presented to allow for easier interpretation of the results. If a practitioner is not using 

software to carry out the calculations, it should be noted that 𝜒2 statistics for effects in over- or 

under-dispersed cases should be calculated using likelihoods from the standard Poisson models 

before being adjusted by the dispersion parameter. 

 

SIMULATION STUDY 

 

Before presenting the results of the case study, we detail a small simulation study that compares 

standard Poisson and quasi-Poisson regression under various levels of underdispersion. The goal 

of the simulation study is to examine the level of underdispersion at which bias adjustments are 

needed. Utilizing a two-level full factorial in five factors as the design matrix (32-runs), the 

simulation protocol proceeds as follows for each choice of 𝜙 =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} corresponding to mild to more severe underdispersion: 

For each of 1,000 iterations: 

1. Select m columns of the design matrix at random to be active. The simulation is performed 

for each of m = 2-5 active main effects.  

2. Randomly assign two-factor interactions to be active.  The simulation is performed for each 

of 1-7 active two-factor interactions.  

3. Select the coefficient vector (β) by randomly assigning coefficients for the active effects 

from {±0.1, ±0.2, … , ±0.9}. These choices are based on those observed for active effects 

in airborne spacing algorithm case study.  

4. Compute 𝝁 = 𝑒𝑿𝐴𝛽 where 𝑿𝐴 is the matrix consisting of the active effect columns. 

5. Generate the response vector, 𝒚, by simulating random variates from a Poisson distribution 

with mean 𝝁 and level of underdispersion defined by 𝜙. This can be accomplished in R via 

the tweedie() function.  

6. Fit a main effect and two-factor interaction model to the simulated data via both standard 

Poisson and quasi-Poisson regression and determine the set of active effects for each model 

fit (a significance level of 𝛼=0.05 is used).  

At the end of the 1,000 iterations, the average proportion of correctly identified active effects 

(power) is calculated for both standard Poisson regression (denoted 𝜋𝑆) and quasi-Poisson 

regression (denoted 𝜋𝑄). Figure 3 displays 𝜋𝑆 − 𝜋𝑄 versus 𝜙 across all simulation scenarios.  
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Figure 3. Simulation Results. 𝜋𝑆 − 𝜋𝑄 versus 𝜙 

 

By plotting 𝜋𝑆 − 𝜋𝑄, we can visualize the reduction in power of employing standard Poisson 

regression when a quasi-Poisson approach is appropriate.  As the dispersion parameter approaches 

one, 𝜋𝑆 − 𝜋𝑄 approaches zero (as expected).   Note that for 𝜙 ≥ 0.6, the reduction is power is less 

than 10% (which does not seem overly severe). In such cases, bias adjustments are likely 

unnecessary (i.e., standard Poisson regression appears robust to milder amounts of 

underdispersion).   On the other hand, smaller values of 𝜙 indicate more substantial reductions in 

power. For instance, at 𝜙 = 0.1, the mean power loss is approximately 28%. As will be seen in 

the next section, 𝜙 is estimated to be less than 0.5 for each of the case study responses. Given the 

potential for loss of power, bias adjustments are appropriate.   

 

CASE STUDY RESULTS 

 

Though under-dispersion was anticipated for the simulation study presented in this paper, 

the researchers were interested in testing for the significance of under-dispersion before making 

adjustments. From Table 2 we can see that dispersion parameter values for each of our datasets 

are less than one, indicating proper bias-adjustment would likely show some effects as significant 

even though standard Poisson regression analysis may not. Therefore Pearson 𝜒2 tests were carried 

out and revealed significant under-dispersion in each of our four datasets (all p-values < 0.0001).  
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Table 2. Dispersion parameters for inflection count and speed change rates 

 

Metric 𝝓̂ p-value for Pearson 𝝌𝟐 Test 

for Under-Dispersion 

Inflection Count 0.43 < 0.0001 

Speed Change Rate for Center 0.33 < 0.0001 

Speed Change Rate for TRACON 0.25 < 0.0001 

Speed Change Rate for Final 

Approach 

0.22 < 0.0001 

 

Both the non-adjusted and bias-adjusted Type-III tests of effects for inflection count and 

speed change rate are shown in Table 3. In both cases for inflection count, none of the main effects 

are significant and the same six two-factor interactions involving wind condition, target aircraft 

arrival route, target aircraft speed profile, and initial spacing error are significant at the α = 0.05 

level; however, note the smaller p-values as a result of properly adjusting for under-dispersion. 

The last six columns of Table 3 show the change in p-values when adjusting for under-dispersion 

in each of the three speed change rate models. For the Center region, the quasi-Poisson effects 

tests indicate two significant interaction effects not found by the standard Poisson tests. For the 

TRACON and Final Approach regions, the standard analysis results in no statistically significant 

effects, while the bias-adjusted analysis detected a number of statistically significant main effects 

and two-factor interactions.  

 

Table 3. Comparison of Type-III tests of effects when using standard non-adjusted results and 

bias-adjusted results 

 
Effect Inflection Count Speed Change Rate 

 Center  TRACON  Final Approach 

Standard 

P-value 

Quasi 

P-value 

Standard 

P-value 

Quasi 

P-value 

Standard 

P-value 

Quasi 

P-value 

Standard 

P-value 

Quasi 

P-value 

WC 0.9702 0.8731 0.8599  0.4143 0.4948    0.0082 * 0.9093 0.3230 

TAR 0.8740 0.8096 0.5975  0.3596 0.9771 0.9540 0.8894 0.7642 

TSP 0.9811 0.8614 0.9940  0.9024 0.7326    0.0243 * 0.9399 0.2228 

ETW 0.6262 0.4593 0.9060  0.8376 0.6263 0.3270 0.7046 0.4135 

ISE 0.3881 0.1899 0.6164  0.3847 0.7923 0.5961 0.8164 0.6165 

WC*TAR < 0.0001 * < 0.0001 *    0.0010 * < 0.0001* 0.1173 < 0.0001 * 0.2184 < 0.0001 * 

WC*TSP < 0.0001 * < 0.0001 *    0.0330 * < 0.0001* 0.5016 < 0.0001 * 0.5284 < 0.0001 * 

WC*ETW 0.9530 0.8117 0.9773  0.8467 0.7260 0.0806 0.9120 0.3328 

WC*ISE < 0.0001 * < 0.0001 * < 0.0001 * < 0.0001* 0.8702 0.2817 0.9938 0.8981 

TAR*TSP < 0.0001 * < 0.0001 *    0.0044 * < 0.0001* 0.3338    0.0001 * 0.2927 < 0.0001 * 

TAR*ETW 0.8700 0.8037 0.8609  0.7611 0.7738 0.5629 0.9462 0.8842 

TAR*ISE < 0.0001 * < 0.0001 * 0.0866   0.0030* 0.0898    0.0006 * 0.5687 0.2189 

TSP*ETW 0.9645 0.7726 0.9929 0.8892 0.7069    0.0181 * 0.9809 0.5208 

TSP*ISE < 0.0001 * < 0.0001 * 0.3868   0.0041* 0.6918    0.0151 * 0.7498    0.0133 * 

ETW*ISE 0.7771 0.6672 0.4468 0.1869 0.9584 0.9163 0.8737 0.7317 

 

An example of the benefit of adjusting for under-dispersion can be seen in Figure 4. The 

first figure shows that the high magnitude wind condition produced the largest speed change rate 

in the TRACON when combined with the altitude change, pulse 2, pulse 3, and slow speed profiles. 

The second figure shows that on Final Approach, the highest speed change rate occurred with the 
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target late / IM early and target early / IM late wind conditions combined with the fast and nominal 

target aircraft speed profiles. However, the interaction between the wind condition and the target 

aircraft speed profile for speed change rate in the TRACON and on Final Approach was only found 

to be statistically significant after the quasi-Poisson regression was adjusted for under dispersion. 

The statistical significance of the results indicate that an increase in the speed change rate degrades 

algorithm performance since it can increase pilot workload as well as decrease the efficiency of 

the aircraft. These results may have been missed if the quasi-Poisson regression had not been 

adjusted for under-dispersion.  

 

Interaction effects between wind condition, target aircraft speed profile, target aircraft 

arrival route, and initial spacing error were found to be significant for both inflection count and 

speed change rate in this initial computer simulation. These independent variables were further 

investigated in a follow-on study which evaluated performance at multiple airports. None of the 

effects associated with expected target aircraft weight were significant, indicating that the 

algorithm is robust to target aircraft weight. Since changes in the weight of the target aircraft does 

not affect performance, this independent variable did not need to be further investigated. These 

findings can be used to better understand the conditions that affect the performance of the 

algorithm and provide valuable information for future algorithm improvements. 

 

 

 
(a) TRACON 
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(b) Final 

 

Figure 4. Interaction plots of the target aircraft speed profile by wind condition for speed change 

rate in the (a) TRACON and on (b) Final 

 

Comments on Statistical Software Packages 

 

Not all statistical software packages appear to fully support the ability to provide dispersion 

tests for both under- and over-dispersion cases. As an example, JMP Pro 13 will produce the 

Pearson 𝜒2 goodness-of-fit statistic; however, the subsequent test result reflected in a p-value is 

only for over-dispersion. Hence, for cases of significant under-dispersion, this software will 

correctly indicate no over-dispersion, but a test for under-dispersion as outlined above will not be 

given. That is, the software only provides a test for over-dispersion by implementing upper 

quantiles for a specified one sided α-level hypothesis test of the Pearson 𝜒2 test statistic. For our 

cases, we were interested in testing for significant under-dispersion. Therefore, lower quantiles 

were instead used and separate calculations using the R statistical software package revealed 

significant under-dispersion in each of our four datasets (see Table 2). 

 

Concerning inference, JMP and R statistical packages support quasi-Poisson analysis for 

both under- and over-dispersed data. In JMP Pro 13, a dispersion option in the GLM model fitting 

tool can be selected prior to fitting the log-linear model. With this option, Type-III tests of effects 

are provided and likelihood ratio 𝜒2 statistics are automatically bias-adjusted by dividing each 

by 𝜙. Although the overall dispersion test results from this software package are always in terms 

of over-dispersion, effects tests are still bias-adjusted in the proper direction for either the under- 

or over-dispersed case. The R statistical software package can also accommodate quasi-Poisson 

analysis through the use of the glm() function within the stats package with the 

family=quasipoisson option, which provides a dispersion parameter as standard output. Type-III 

tests of effects can be calculated in R using the Anova() function in the cars package (see 

appendix).  

 

CONCLUSIONS 

 

A summary of the statistically significant factors when adjusting for under-dispersion is 

shown in Table 4. The high magnitude wind condition produced the largest speed change rate in 
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the TRACON when combined with the altitude change, pulse 2, pulse 3, and slow target aircraft 

speed profiles. On Final Approach, the highest speed change rate occurred with the target late / IM 

early and target early / IM late wind conditions combined with the fast and nominal target aircraft 

speed profiles. These results can be used to better understand performance of the algorithm and 

provide valuable information for future algorithm improvements. For example, the performance 

of the algorithm could be improved in the future if more detailed wind information was available 

to the IM aircraft. The true impact of this result would have been mistakenly identified as 

insignificant had the Poisson distribution assumption of equal mean and variance been enforced. 

 

It can be seen in Table 4 that the main effects are rarely statistically significant for any of 

the metrics even after being bias-adjusted, while two-factor interactions between wind condition, 

target aircraft arrival route, target aircraft speed profile, and initial spacing error are almost always 

statistically significant. The dynamics of the system, including the algorithm and aircraft 

dynamics, are very complex. This indicates that changes in a single input to the system may have 

very little effect on the system output; however, changes in multiple factors can create significant 

changes in the output. Ideally, the algorithm’s performance would be robust to external factors, so 

that performance would be consistent under all conditions. Detection of the statistically significant 

effects identified specific conditions that degrade algorithm performance. These factors were 

further evaluated in a follow-up computer simulation prior to additional expensive human-in-the-

loop testing. Based on the results of the simulation presented in this paper, the follow-up study 

also examined a modified process for providing wind information to the algorithm. By not properly 

taking into account the under-dispersion present in the data, statistical inference would deem most 

if not all of the effects to be non-significant in a study where actual relationships between the 

factors and responses deserve closer attention. Though not the case in the study presented here, 

just as important is the detection of over-dispersion and the ability to test if its influence requires 

tests of effects to be bias-adjusted upward. The same quasi-Poisson methodology can be 

implemented to account for over-dispersion as well as under-dispersion. 

 

 

Table 4. Summary of significant effects for all metrics investigated when the bias due to under-

dispersion is properly adjusted 

 

Effect Inflection 

Count 

Speed Change Rate 

 Center  TRACON  Final 

Approach 

WC   X  

TAR     

TSP   X  

ETW     

ISE     

WC*TAR X X X X 

WC*TSP X X X X 

WC*ETW     

WC*ISE X X   

TAR*TSP X X X X 

TAR*ETW     
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TAR*ISE X X X  

TSP*ETW   X  

TSP*ISE X X X X 

ETW*ISE     

 

 

APPENDIX: R CODE 

 
Quasi-Poisson regression can be carried out in a straightforward manner in R. The following R 

code was used for the Inflection Count response: 

 
options(contrasts=c(unordered="contr.sum",ordered="contr.poly"))  

 

#Fit a main effects and two-factor interaction model using 

quasi-Poisson regression  

myglm <- 

glm(InflectionCount~(Wind.Condition+TgtArrivalRoute+Target.Speed

.Profile+ExpectedTgtWeight+InitialSpacingError..sec.)^2,family="

quasipoisson",data=mydata) 

 

#The car package is needed for requesting tests based on Type 

III sums of squares 

library(car) 

TypeIII_SS <- Anova(myglm,type="III") 
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